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ABSTRACT METHOD (QUALITATIVE RESULTS

In this work we explain why symmetrical objects can be a challenge when

' : : Implementation
training machine learning algorithms that aim at estimating their 6D pose Mapping Ambiguous Rotations =
from images. We propose an eflicient and simple solution that relies on a e Objective: Mapping all ambiguous rotations to a canonical e Prediction of the objects’ 6D poses via localization of 2D reprojec-
normalization of the pose rotation. This approach is general and can be used one. tions of 3D bounding box corners
with any 6D pose estimation algorithm.
e Solution: Introduce mapping Map such that: e Integration of our approach into Faster R-CNN, adding one regres-

sor branch per regression subspace

MOTIVATION

Map(R) = g_lRa VR € SO(3), (2) o Generated SyntheT-Less, a 30K samples synthetic dataset with

annotated depth, normals, edges, instance/semantic segmentation
masks, 3D pose

Regress the pose estimation function f : Image — Pose
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Definition:  Two rotations R; and R, of an object O are ambiguous
(R1 ~ Ry) if they result in the same object appearance under a rendering R:
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Ry ~ Ry < R(O,[Ry,Ti]) = R(O, Ry, Ty)) (1)

Problem: f cannot be learned for symmetrical objects, as it is not a Solving Pose Discontinuities
1-1 mapping for ambiguous poses.

Effectiveness of our approach

CONCLUSION

e Solution: Split the pose space into unambiguous subspaces

] . th _ . ..
with dedicated pose regressors 2D-coordinates loss (L) Wit ,OUt, We propose a simple method to solve the problems that arise when training
normalization : : : : :
. Train a machine learning method to predict the 6D pose of an object with symme-

oo |',: “ '~ g | | Val tries. Our method is agnostic to the exact pose representation and the pose
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